Stopping Parkinson’s Disease: 7 Prevention Methods 

Stopping Parkinson’s Disease: 7 Prevention Methods 

Parkinson’s disease causes nervous system complications. If you know someone who has struggled with this disease, you know how debilitating it can be. Parkinson’s affects mood, memory, cognition, and movement. 

Fortunately, science is always advancing, and experts are learning more about Parkinson’s disease. Here are seven ways to help prevent Parkinson’s disease that are backed by scientific research. 

1. Do Cardio Regularly

Cardiovascular exercise is linked to many other health benefits, but one of the most notable is reduced risk of Parkinson’s disease. Aerobic exercise, even in mild forms like walking or jogging, boosts your brain health. This improves and protects your memory, concentration, mood, and cognitive abilities as you age. 

Cardio has an anti-inflammatory effect on your entire body. This is significant because researchers believe that Parkinson’s is the result of excess inflammation, among other factors. By getting a moderate to high amount of aerobic exercise each week, you can help protect yourself from developing this debilitating disease. 

2. Relieve Stress in Healthy Ways

Psychological stress can be just as harmful as physical stress. Between the demands of work, family life, social circles, and hobbies, many modern Americans are more stressed than ever before. 

It’s essential to reduce stress to stay healthy throughout your lifetime. Chronic high stress levels can contribute to whole-body inflammation, which is a serious risk factor for Parkinson’s disease. 

Stress also reduces the volume of brain matter in areas that control memory, cognition, and movement, which are all negatively affected by Parkinson’s disease. By regularly combating stress, you can protect your brain and reduce your chances of developing this problematic condition. 

Some healthy forms of stress relief include:

  • Exercise
  • Journaling
  • Meditation
  • Yoga
  • Self-care days
  • Getting at least eight hours of sleep at night
  • Spending time outdoors
  • Engaging in hobbies

These activities help you stay well-adjusted and free of stress, which weighs down your mental and physical health over time. Consider making changes in your life that cut out large sources of stress whenever possible. 

3. Fill Your Plate with Veggies 

Most people know that vegetables are extremely healthy. If you struggle to get your daily servings of veggies in, this information might make you reconsider your habits. 

Vegetables naturally contain antioxidants, which are anti-inflammatory compounds that protect against aging and tissue damage. Filling your plate with vegetables increases your intake of antioxidants, vitamins, and minerals. All of these micronutrients contribute to better brain health and anti-aging. 

When it comes to Parkinson’s prevention, this is one of the most effective steps you can take. If taste is an issue, consider adding more flavors to your meals to offset the taste of vegetables. You can also add seasoning and heart-healthy oils to make vegetables taste better. 

4. Avoid Pesticides and Other Harsh Chemicals

Modern agriculture has changed a lot as humanity has progressed past the hunter-gatherer days. This means that crop growers are using more chemical pesticides than ever before. The long-term effects of these chemicals on human health are overwhelmingly negative. 

Some studies have linked higher rates of Parkinson’s disease with high exposure to pesticides in farmers. The harsh chemicals used in large-scale agriculture are designed to keep bugs away from crops, but they can harm your brain health in the process. 

To avoid this problem, shop organic and local whenever possible. Be mindful that many organic products can still contain certain pesticides. It’s best to shop at your local farmer’s markets and small grocery stores rather than chains. 

These steps will help you access high-quality produce without exposing yourself to harsh, damaging chemicals. 

5. Increase Your Vitamin D Intake

Vitamin D is incredibly important for immunity, mood, bone health, and brain health. Research has shown strong connections between Parkinson’s disease and low vitamin D levels. Now more than ever, getting enough vitamin D in your diet is essential. 

You get some vitamin D from sunlight. The sun’s rays boost the amount of vitamin D in your bloodstream through chemical changes. 

However, too much sun exposure is linked to skin cancer and other serious health problems. You should always wear sunscreen while spending extended amounts of time outdoors, and this can reduce the amount of vitamin D you get from the sun. 

You should aim to get most of your vitamin D from your diet and supplements. Healthy sources of animal fat naturally contain lots of vitamin D. Opt for meats and dairy products that have “grass-fed” or “free-range” on the labels. These animals and their products are healthier and richer in vitamin D than factory-farmed animals. 

If you struggle to get enough vitamin D in your diet, work with your doctor to find an appropriate supplement. Always consult a medical professional before starting a new medication or supplement. 

6. Get Plenty of Sleep 

Sleep is the most restorative and reparative process your body undergoes. Without enough sleep, your brain health is sure to suffer. Your memory, cognition, mood, and physical performance all rely on an adequate amount of sleep. 

Parkinson’s disease is a neurodegenerative disorder, so it makes sense that chronic lack of sleep can raise your chances of developing it. 

Healthy adults should get seven to nine hours of sleep every night. Your sleep needs may be slightly different from the recommended range. It’s important to pay attention to how you feel when you wake up. 

If you wake up groggy, tired, and sluggish even after eight hours of sleep, chances are you need more. On the other hand, some people can thrive on seven to eight hours of sleep with no problems. 

Sleep will protect your brain health and fight inflammation that can lead to Parkinson’s disease. Make getting plenty of shut-eye a strong priority in your life — your brain will thank you later. 

7. Drink Coffee or Green Tea

Caffeine seems to have a protective effect against developing Parkinson’s disease. It’s important to get high-quality sources of caffeine. Otherwise, you may notice sleep disturbances and cardiovascular side effects. Avoid sugary, caffeinated beverages like energy drinks and soda. 

Green tea and coffee both have antioxidants, which reduce inflammation and promote better brain health. You don’t have to give up your daily fix to fight Parkinson’s — in fact, it may help!

Know the Facts About Parkinson’s Disease

Stay updated on the latest information about Parkinson’s disease to reduce your risk of developing it. If you or a loved one are already struggling with Parkinson’s, therapeutic treatments like stem cell therapy may help. Ultimately, knowledge is power when it comes to fighting neurodegenerative diseases.

All About Orthopedic Rehab

All About Orthopedic Rehab

Orthopedic rehab is a type of rehabilitation designed to help people who have been injured, had surgery, or have degenerative conditions. Its goal is to aid patients in regaining mobility, balance, and function in their musculoskeletal system. Orthopedic rehab also focuses on finding ways to alleviate pain.

If you have suffered an injury or gone through surgery, or if you have a degenerative condition that affects your mobility, orthopedic rehab could be the right option for you. But what can it help with, and what can you expect from the process?

What Conditions Can Orthopedic Rehab Help With?

Orthopedic rehab is a conservative treatment that can benefit patients of all ages who are suffering from issues that affect their range of motion, joint flexibility, muscle strength, and body function.

It can help with conditions like:

  • Joint pain
  • Arthritis
  • Parkinson’s disease
  • Lyme disease
  • Scoliosis
  • Stroke
  • Spinal stenosis
  • Knee instability 
  • Carpal tunnel
  • Osteoporosis
  • Sciatica

This type of rehab is usually essential for those recovering from joint replacement surgeries and similar procedures. It can also help with pelvic floor issues.

Orthopedic physical therapy is important after certain surgical procedures, including those like:

  • Knee replacement
  • Rotator cuff replacement
  • Knee arthroscopy
  • Hip replacement 
  • Cancer surgery
  • Heart surgery

This type of rehab can help to normalize your gait, improve your range of motion, and even prevent excessive scar tissue buildup. 

It’s also helpful for people who’ve suffered a chronic injury. A chronic injury is damage that occurs over time, generally because of small movement patterns that lead to repetitive injuries to your bones, joints, or tendons. Tennis elbow or carpal tunnel are examples. With rehabilitation, you can learn how to move without injuring yourself. 

Benefits of Orthopedic Therapy

Orthopedic therapy helps increase your mobility. Mobility can be limited after an operation, while recovering from an injury, or when dealing with degenerative diseases. This type of therapy utilizes stretching and exercise strategies to slowly increase your range of motion. 

Orthopedic therapy also helps with pain management so that you don’t have to rely as much on pain medications. Therapists can massage the treatment area, increasing circulation and decreasing inflammation. Some orthopedic therapy options use ice packs for dealing with inflammation and heat packs for loosening tension. 

Better blood circulation, which orthopedic therapy helps with, also brings oxygen and nutrients to the treatment area. This makes it easier for injuries to heal. 

You can also help avoid re-injuring yourself. Therapy assists by teaching you to move safely while also showing you how to gain strength in the area. 

Types of Treatments Offered in Orthopedic Therapy

When you turn to orthopedic therapy, you can benefit from a few different types of treatments. 

Hot and Cold Therapy

Orthopedic therapy often relies on thermotherapy (heat therapy) and cryotherapy (cold therapy) to treat musculoskeletal swelling and pain. 

E-Stim

Electrical stimulation can help diminish pain. With E-stim, your therapist attaches a device to the treatment area. The two main types of devices they may use include TENS, which uses low-voltage electrical currents to offer pain relief, and NMES, which sends electrical impulses to the nerves. 

Exercise Therapy

You will get an exercise plan that helps you increase mobility, strength, and balance. You will get a chance to practice them with the therapist so that you can then repeat them at home. 

Soft Tissue Manipulation

Soft tissue manipulation is a kind of manual physical therapy in which your physical therapist massages your ligaments, fascia, and muscles. It helps optimize muscle function while also decreasing tension. It may also be effective at improving blood circulation. 

Laser or Light Therapy

Low-level lasers and light therapies can help with muscle performance. They have the potential to reduce muscle fatigue and help tissues repair after an injury. 

Platelet-Rich Plasma Therapy 

Platelet-rich plasma (PRP) therapy uses the growth factors in your blood to encourage healing at the treatment area. It’s an option that often complements other orthopedic therapies. 

What an Orthopedic Rehab Plan Can Look Like

The orthopedic plan your healthcare provider recommends will consider your injury, overall health, abilities, and goals. You will have a personalized and unique program that your team can adjust as you progress through it. 

The first step is to determine whether you can benefit more from an inpatient or outpatient orthopedic rehab program. In more complex situations, inpatient care is usually the right choice, while outpatient options are better suited for minor injuries. 

Most patients start each rehab session with physical therapy. These sessions can last between 30 and 60 minutes. Those with more serious issues can begin lying on an exam table while the therapist performs some passive exercises. You may then have to perform the same exercises on your own. 

Your therapist may then continue to show you more stretches and exercises to incorporate into your home routine. Some of the exercises may even rely on weights or bands. 

Orthopedic rehab also focuses on helping patients perform everyday tasks. If you have trouble walking, the session can involve relearning how to do this correctly to avoid falls and further injuries. If you have had a joint replacement, you may relearn to walk with the support of the therapist before moving on to walkers and other devices. 

Patients who need to improve grip strength will likely spend a significant amount of time in the session practicing grabbing things of increasing weight. 

For patients who have degenerative diseases, balance exercises are particularly useful. They can help the patient better understand where their body is in space. Some of these exercises can include standing on one foot and raising or lowering a foot or knee. 

Getting the Care You Need

Orthopedic rehab offers the chance to regain your strength, balance, range of motion, and more after suffering an injury or going through surgery. It is also useful in the process of managing degenerative diseases like Parkinson’s. 

By combining various types of therapies, including PRP therapy, you have the chance to get relief from pain while also preventing future injuries. 

Who Should Get Stem Cell Treatments

Who Should Get Stem Cell Treatments

Regenerative medicine options like stem cell treatments are growing in popularity both because of their potential effectiveness and because they can help you avoid invasive procedures like surgeries. Stem cell therapies focus on helping your body improve what it already does naturally — heal injuries.

Stem cells are the cells from which all differentiated cells form. They can come from your bone marrow or fat, with some people also turning to umbilical cord stem cells for treatment. But how do you know if you could benefit from stem cell therapy? 

Those With Sports Injuries

If you play sports, you know that injuries can occur at any moment. You can twist your body in an unnatural way or suffer an impact that damages joints or ligaments. Minor injuries usually benefit from ice packs and rest, but healing can take time. 

Healing is also a delicate process that can be disrupted. If that occurs, the injury might not heal completely and could lead to chronic issues that impact your mobility and even cause lasting pain. 

When you turn to stem cell therapies, you can speed up the healing process. This type of regenerative medicine helps reduce inflammation, making it easier for nutrients and oxygen to get to the site of the injury.

Increased oxygen and nutrients are particularly important when dealing with ligaments and cartilage, which naturally don’t receive much blood flow. 

Those With Arthritis

Arthritis is a debilitating condition in which your joints’ cartilage starts to deteriorate. The cartilage is what cushions your joints, preventing the bones from rubbing against one another. Once the cartilage breaks down, you can experience pain, stiffness, and mobility issues. In some cases, it can even cause joint deformity. 

Stem cells, especially mesenchymal stem cells, release anti-inflammatory factors that help with pain and encourage your body to heal the damaged areas. Stem cells injected into the affected joint can reduce swelling, helping reduce pain and also restoring some mobility to stiff joints. 

One of the best things about stem cell therapies for arthritis is that this kind of treatment is minimally invasive.

Those With Spinal Cord Injuries

Spinal cord injuries may severely impact your quality of life. You may struggle to perform everyday tasks and could face mobility issues that leave you dependent on others. 

Spinal cord injuries are particularly difficult to treat because healing tends to plateau as a result of microenvironmental changes like inflammation, glial scar formation, and more. Stem cells can help because of their power to reduce inflammation, allowing the healing process to continue.  

Ongoing treatment with stem cells could offer an improvement in mobility and a reduction in pain levels.

Those With Traumatic Injuries

After a major injury, like one that results from a car accident, healing can seem impossible. You may experience significant pain and could be dealing with mobility concerns that require physical therapy and even surgery. 

Stem cell therapy works well in conjunction with physical therapy and other treatments because it utilizes cells from your body gathered in a minimally invasive way. You can continue other therapeutic programs while giving your body the chance to reduce inflammation so that blood can reach the injury site. 

A better level of blood flow to the area not only brings nutrients and oxygen but also helps flush out toxins at the injury site that could make the symptoms worse. 

Those Who’ve Gone Through Surgery

Going through surgery can put a lot of strain on your body. That is one of the reasons why the recovery process is often so long. If you’ve been through a surgical procedure, consider stem cell therapy. 

Stem cell therapy can help reduce the recovery time so that you can start feeling more like yourself again. Inflammation is a huge concern. Think of the kinds of bruising you may have after a surgical procedure. Although stem cell therapy can’t prevent all inflammation and bruising, its use after surgery can reduce how much you experience. 

If there’s less inflammation, the area can receive more nutrients and experience faster healing. 

Those Who Need Joint Replacements

Replacing a joint is a surgical procedure that requires the implantation of an artificial joint and the removal of the damaged one. The recovery process for this type of procedure tends to be difficult, with many people experiencing mobility issues even as they heal because the artificial part hasn’t really integrated into the rest of the tissue. 

If this type of surgery is something that you have to go through, adding stem cell therapy to the recovery process makes a difference. Stem cell therapies encourage the growth of new tissues around the artificial replacement that can make mobility easier and decrease pain, helping you get back to your life more rapidly. 

Those With Degenerative Diseases

Degenerative diseases are chronic conditions that progressively get worse. They include diseases like:

For these conditions, a combination of treatments is usually most effective. They can include medications, physical therapy, and even surgery. By also turning to stem cell therapy, you have the chance to tackle the underlying cause of the problem so that you can get relief from symptoms. 

Stem cell therapy for Parkinson’s disease, for example, focuses on helping restore the failing neurons that are in charge of producing dopamine. This could help with the management of dopamine levels and could even restore some function. In many instances, stem cell therapy for Parkinson’s can even slow down the disease. 

Is Stem Cell Therapy Right for You?

Stem cell therapy might be able to offer the help you need with managing degenerative conditions, healing injuries, and providing pain relief that doesn’t rely on narcotics. You don’t have to worry about suffering allergic reactions or rejections because stem cell therapies usually rely on cells from your body. 

If you’re considering stem cell treatments or want to know more about what the process involves and what you can expect, talk with a regenerative medicine specialist about the options available. 

A Review on the Potential of Mesenchymal Stem Cells and Exosomes for Parkinson’s Disease

A Review on the Potential of Mesenchymal Stem Cells and Exosomes for Parkinson’s Disease

Parkinson’s disease (PD) is the second most predominant neurodegenerative disorder worldwide, affecting over 10 million people. Characterized by a slow and progressive loss of control of the neurological system as a result of dopamine depletion, symptoms of PD often include tremors, slowed movement, impaired posture and balance, and gradual loss of automatic movements.

While PD cannot be cured, current treatment is focused on alleviating symptoms and slowing the progression of the disease. Specifically, deep brain stimulation or therapies to increase DA levels by administering a DA precursor are the available therapy options for PD.  

However, research has found that DA precursor therapy has little effect on the progression of PD and its efficacy decreases as the disease progresses.

Recent progress in the clinical understanding of regenerative medicine and its properties associated with stem cell therapy has provided the opportunity to evaluate new and potentially effective methods for treating a wide range of neurodegenerative illnesses, including PD. Specifically, mesenchymal stem cells (MSCs) have been found to be the most promising form of stem cell and have demonstrated the ability to differentiate into dopaminergic neurons and produce neurotrophic substances.  

In this review, Heris et al. discuss the application of MSCs and MSC-derived exosomes in PD treatment.

Research has identified dysregulation of the autophagy system in the brains of PD patients, suggesting a potential role for autophagy in PD. In PD models, MSCs may activate autophagy signals and exhibit immunomodulatory effects that alleviate inflammation and improve tissue healing; this type of treatment had previously been used in treating various forms of neuroinflammatory and neurodegenerative illnesses.

The authors indicate that MSCs can be administered either systemically or locally. While systemic transplantation allows MSC-based treatment of pathologies affecting the entire body, local transplantation aims to alleviate symptoms associated with illnesses that originate from certain organs and is performed through intramuscular or direct tissue injection.   

Research has also demonstrated that stem cell-derived dopaminergic transplants could be a suitable method for the long-term survival and function of transplants; in the case of MSC therapy, the average dose in animal models is usually 50 million cells for each kg of weight.

MSC-derived exosomes demonstrate therapeutic characteristics similar to their parents, have the ability to avoid whole-cell post-transplant adverse events, have a high safety profile, cannot turn into pre-malignant cells, and no cases of immune response and rejection have been reported. 

While the use of MSCs in the treatment of PD continues to show potential, Heris et al. point out that many of the clinical trials have had few participants and can be costly. Considering these limiting factors, the results from these studies are not able to be generalized to everyday medical care without further clinical studies to address these concerns.


Source:  “The potential use of mesenchymal stem cells and their exosomes in ….” 28 Jul. 2022, https://stemcellres.biomedcentral.com/articles/10.1186/s13287-022-03050-4.

How Does Stem Cell Therapy Work?

How Does Stem Cell Therapy Work?

Treatment of injuries and damage to organs and other tissues as a result of the aging process or conditions has often relied on managing symptoms. By offering painkillers and steroids, healthcare providers can keep you more comfortable, but they are not targeting the cause of the problem. This means you have to keep relying on medications. One option more people are exploring is regenerative medicine, also known as stem cell therapy. This type of regenerative medicine offers the chance to treat the underlying cause of the issue so that you can achieve lasting relief. In this article we will discuss how does stem cell therapy work?

What Is Stem Cell Therapy?

Stem cell therapy utilizes stem cells, which are those that create specialized cells. They can regenerate damaged or dying cells. Although you retain stem cells throughout your life, the aging process can make them less effective. This aging can lead to injuries that don’t heal completely, causing chronic pain and many other problems.  

The goal of stem cell therapy is to amplify your body’s natural healing processes. To do this, it relies on stem cells. 

In stem cell therapy, these cells are often harvested from the patient’s own body or from donors, and then administered to the affected area or systemically. The goal is to encourage tissue regeneration, repair damaged cells, and promote healing. Stem cells can differentiate into the specific cell types needed to replace or repair damaged tissues, making them a promising treatment for a wide range of conditions.

Stem cell therapy has shown potential in treating conditions such as heart disease, neurological disorders (e.g., Parkinson’s and Alzheimer’s disease), autoimmune conditions, and orthopedic injuries

Benefits of Stem Cell Therapy

Stem cell therapy is a less invasive option than many other therapies. It requires the removal of stem cells from fat or bone marrow and then the injection of the prepared stem cells at the site of the damage. This not only makes it a viable option for those who can’t undergo surgery, but it also means the recovery process is shorter. 

Another benefit of stem cell therapy is that it helps reduce inflammation. When you get injured, your body responds by causing inflammation to prevent the spread of damaging agents while also helping remove pathogens and cell debris. Inflammation also helps prepare the area for the repair process. 

In some instances, however, inflammation doesn’t go away, leading to chronic pain. Inflammation also makes it more difficult for the wound to heal because the area is not receiving enough blood. 

Stem cell therapy helps reduce this inflammation, allowing oxygen and nutrients to make their way to the damaged area. Less inflammation results in less pain. 

Stem cell therapy is also a quick procedure. It can be done as an outpatient option, and it doesn’t require general anesthesia. Because most people benefit from adult stem cells, the procedure also avoids the need to worry about rejections or allergic reactions. 

What to Expect from the Stem Cell Therapy Procedure

The first thing you will need to do is reach out to your healthcare provider to see if you are a good candidate for stem cell therapy. Your provider will go through your medical history to see which types of stem cells you can benefit the most from. The kind of condition or injury you have will impact this choice. 

If you’re using your own stem cells, your healthcare provider will collect a sample from your bone marrow or fat. They then process them in a laboratory to isolate and concentrate them. In some cases, the process can involve centrifugation, filtering, and other options to help collect the highest number of stem cells. 

The next step is receiving the stem cells, which can take place intravenously, with an injection, as well as other administration techniques. 

After you receive the stem cells, your healthcare provider will monitor you to ensure there are no complications. They will also schedule follow-up phone calls to monitor how you are doing post-treatment. 

Most people can get right back to their daily activities with some minimal post-treatment guidelines without having to worry about long recovery times. 

Available Stem Cell Treatments

How does stem cell therapy work & what are the available treatments? Stem cells can help treat a variety of conditions. It’s helpful in treating cartilage regeneration and osteoarthritis because the stem cells can differentiate into chondrocytes, which are cells that maintain cartilage.

It’s also an option that can help with scar reduction and wound healing. For this procedure, stem cells derived from fat cells are a good option. They can help with tissue regeneration, potentially leading to healing chronic wounds and even the prevention of scarring. 

Stem cell therapy is also a good choice for neurodegenerative issues. It can help replace neurons and provide neuroprotective benefits, potentially leading to slowing down the disease’s progression. 

Stem cell therapy may also target ligament and tendon injuries, which are common in people who are very active. This type of therapy can help speed up the recovery process and might even be able to prevent the development of chronic pain issues that can affect mobility. 

Another way stem cell therapy is able to help is by treating autoimmune diseases. Most autoimmune diseases are impacted by inflammation, so an option like stem cell therapy, which helps reduce swelling, can be helpful. 

Choosing Stem Cell Therapy for Lasting Results

Stem cell therapy offers hope for the treatment of many types of conditions. By targeting the cause of pain and chronic injuries, like inflammation, you can avoid relying solely on pain medications, which only mask symptoms. Stem cell therapy makes it possible to have available options to help manage orthopedic injuries, neurodegenerative conditions, and much more. 

If you want to learn more about how does stem cell therapy work and not sure whether stem cell therapy is a good option for your needs, speak with a regenerative medicine specialist. They can let you know if you are a good candidate. 

A Review on Stem Cell Research

A Review on Stem Cell Research

Regenerative medicine using stem cell therapy has grown in popularity in the past years because of the promising results it has shown for the management of conditions, injuries, and other issues. 

By understanding the power of stem cells, the options available, and the reasons why some people are hesitant while others urge research forward, you can decide for yourself whether they are the appropriate treatment option for you.

What Are Stem Cells, and How Do They Help?

Stem cells are undifferentiated cells with the potential to become and create specialized cells. They function as a repair system for the body, contributing to the process of tissue regeneration while also supporting normal growth and development. 

Stem cells have two crucial and unique abilities: pluripotency and self-renewal. Pluripotency is the ability to become any kind of cell needed, and self-renewal refers to the way they can replicate themselves indefinitely, providing a never-ending supply of undifferentiated cells. 

Different Types of Stem Cells

There are three broad categories of stem cells: embryonic stem cells, adult stem cells, and induced pluripotent stem cells. Each option has diverse applications and unique characteristics. 

Embryonic cells come from blastocyst-stage embryos, which are embryos that are from three to five days old. They usually derive from in vitro fertilization clinics. At this stage, the embryo contains an inner cell mass capable of creating all of the tissues that make up the human body. Embryonic cells are fertilized in a lab and donated with full consent. But due to ethical controversy, it is widely used in research only.

Adult stem cells are found in various tissues and organs throughout the adult human body. These stem cells are multipotent, so they can transform into a limited number of stem cells. Adult stem cells help maintain tissue homeostasis and repair and replace damaged cells.

Adult stem cells include:

  • Mesenchymal stem cells
  • Blood stem cells
  • Skin stem cells
  • Neural stem cells
  • Epithelial stem cells

Induced pluripotent stem cells are made by reprogramming certain adult stem cells into a pluripotent state with the use of genetic factors. These cells are similar to embryonic stem cells in the way they function. 

Stem Cell Research: Why There’s Controversy

Using stem cells and performing stem cell research still poses challenges in ethics for some people, especially when turning to embryonic stem cells. 

Concerns over when personhood begins make the use of embryonic stem cells more complex because there’s a worry about the moral status of embryos and whether they can be used or discarded. 

It’s crucial to understand that the embryos that are used have never been in a woman’s body. They are embryos that fertility clinics would otherwise discard. Although the discarding of the embryos is not usually a controversy, the use of those same embryos for research creates controversy for some. 

In this regard, induced pluripotent stem cells are more readily accepted because they don’t rely on embryos. Other issues can arise, however, when it comes to the actual process of researching stem cells. This includes oversight concerns as well as consent issues. 

Arguments for Stem Cell Research

Because of the benefits that stem cell therapy offers, many scientists encourage research to improve treatments and learn more about how human bodies function. 

Scientific Advancements

Stem cell research contributes to the understanding of cellular processes. This allows for the development of better treatment options, as well as a better comprehension of how some conditions form. Stem cells hold promise for the treatment of degenerative conditions like Parkinson’s disease, COPD, and Alzheimer’s

Additionally, stem cell research offers the chance for scientists to understand how stem cells replace or repair damaged cells. This information would make it easier to provide targeted treatments that are more efficient and longer lasting. 

Economic Boost

Using stem cells to create new therapies and medical technologies opens the door to the creation of new jobs and specializations. These advanced treatments can also help decrease medical costs, helping the economy in the long run. 

Ethical Use of Discarded Embryos

Embryos that have been made via in vitro fertilization processes and have gone unused can serve a purpose instead of being discarded. Many argue that this is a better option than treating the embryos like medical waste.

Arguments Against Stem Cell Research

Those against stem cell research generally cite safety and ethical concerns centering on consent and exploitation problems. 

Safety and Efficacy

Because stem cell therapies are still relatively new, there are worries about how effective they can be. The issue with this argument against stem cell research is that it fights against the very thing that would provide a definite answer as to whether stem cells are effective and safe: ongoing research. 

Ethical Concerns

The ethical concerns mainly focus on the use of embryonic stem cells, including the worry about obtaining consent. In many instances, detractors suggest turning to induced pluripotent stem cells for research and avoiding embryonic cell use because of the ethical barriers that would slow the research down. 

In other instances, the worry of consent focuses on the risk of the potential exploitation of vulnerable populations. Those against the research note concern about the possibility of future coercion and other similar activities.

However, as with any other form of research, the scientific community imposes strict guidelines designed to protect against these concerns.

Focusing on the Potential of Regenerative Medicine

Living with chronic conditions that affect quality of life usually means relying on medications, invasive procedures, and therapies that might manage some symptoms but don’t get to the root of the problem. 

On the other hand, stem cell research offers the potential to not only understand the causes of some of the most debilitating conditions and injuries, but also to provide therapy solutions to help manage symptoms. 

The path to learning more about conditions like COPD or Parkinson’s is not easy, but embracing new and promising treatment options can open a way forward. By tackling some of the ethical concerns people have about stem cells head-on, lives may be able to improve for many people around the world.

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!

Request Information Packet

We'll send your FREE information packet that outlines our entire personalized, stress-free stem cell treatment process!

Thanks for your interest!